
This homework focuses on analysis of habitat classification using a
chunk of landscape including the Rice River Center. The data were
grabbed from the NLCD viewer website
consisting of a (roughly) 25 km\(^2\)
chunk of landscape.
Here are the raw data url’s on GitHub.
library( raster )
Loading required package: sp
library( landscapemetrics )
land_2011 <- "https://github.com/dyerlab/ENVS-Lectures/raw/master/data/NLCD_2011_Land_Cover_L48_20190424_qn2B1f8ganicJNKnJN0e.tiff"
land_2013 <- "https://github.com/dyerlab/ENVS-Lectures/raw/master/data/NLCD_2013_Land_Cover_L48_20190424_qn2B1f8ganicJNKnJN0e.tiff"
land_2016 <- "https://github.com/dyerlab/ENVS-Lectures/raw/master/data/NLCD_2016_Land_Cover_L48_20190424_qn2B1f8ganicJNKnJN0e.tiff"
land_legend <- "https://raw.githubusercontent.com/dyerlab/ENVS-Lectures/master/data/NLCD_landcover_legend_2018_12_17_qn2B1f8ganicJNKnJN0e.csv"
Questions
The following questions will focus on analyzing the landscape types
in the region of the Rice Rivers Center.
Landscape structure can be examined by type, composition, and
configuration. Load in the above three time periods for the same
location and compare them in terms of Type, Composition, and
Configuration (where configuration is measured by average patch area for
forest types (Value %in% c(41, 42, 43) )
).
In 2011, the biggest difference in habitat areas was accounted
for by Herbaceous ground cover. What happened to that land type in 2013
and 2016?
LS0tCnRpdGxlOiAiSGFiaXRhdCBBY3Rpdml0eSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKCiFbXShodHRwczovL2xpdmUuc3RhdGljZmxpY2tyLmNvbS82NTUzNS81MTAyMjg5OTUxNl8wZGZkMjM0MGEyX2tfZC5qcGcpCgoKVGhpcyBob21ld29yayBmb2N1c2VzIG9uIGFuYWx5c2lzIG9mIGhhYml0YXQgY2xhc3NpZmljYXRpb24gdXNpbmcgYSBjaHVuayBvZiBsYW5kc2NhcGUgaW5jbHVkaW5nIHRoZSBbUmljZSBSaXZlciBDZW50ZXJdKGh0dHBzOi8vcmljZXJpdmVycy52Y3UuZWR1KS4gIFRoZSBkYXRhIHdlcmUgZ3JhYmJlZCBmcm9tIHRoZSBbTkxDRF0oaHR0cHM6Ly9ubGNkLmdvdikgdmlld2VyIHdlYnNpdGUgY29uc2lzdGluZyBvZiBhIChyb3VnaGx5KSAyNSBrbSReMiQgY2h1bmsgb2YgbGFuZHNjYXBlLgoKSGVyZSBhcmUgdGhlIHJhdyBkYXRhIHVybCdzIG9uIEdpdEh1Yi4KCmBgYHtyfQpsaWJyYXJ5KCByYXN0ZXIgKQpsaWJyYXJ5KCBsYW5kc2NhcGVtZXRyaWNzICkKCmxhbmRfMjAxMSA8LSAiaHR0cHM6Ly9naXRodWIuY29tL2R5ZXJsYWIvRU5WUy1MZWN0dXJlcy9yYXcvbWFzdGVyL2RhdGEvTkxDRF8yMDExX0xhbmRfQ292ZXJfTDQ4XzIwMTkwNDI0X3FuMkIxZjhnYW5pY0pOS25KTjBlLnRpZmYiCmxhbmRfMjAxMyA8LSAiaHR0cHM6Ly9naXRodWIuY29tL2R5ZXJsYWIvRU5WUy1MZWN0dXJlcy9yYXcvbWFzdGVyL2RhdGEvTkxDRF8yMDEzX0xhbmRfQ292ZXJfTDQ4XzIwMTkwNDI0X3FuMkIxZjhnYW5pY0pOS25KTjBlLnRpZmYiCmxhbmRfMjAxNiA8LSAiaHR0cHM6Ly9naXRodWIuY29tL2R5ZXJsYWIvRU5WUy1MZWN0dXJlcy9yYXcvbWFzdGVyL2RhdGEvTkxDRF8yMDE2X0xhbmRfQ292ZXJfTDQ4XzIwMTkwNDI0X3FuMkIxZjhnYW5pY0pOS25KTjBlLnRpZmYiCmxhbmRfbGVnZW5kIDwtICJodHRwczovL3Jhdy5naXRodWJ1c2VyY29udGVudC5jb20vZHllcmxhYi9FTlZTLUxlY3R1cmVzL21hc3Rlci9kYXRhL05MQ0RfbGFuZGNvdmVyX2xlZ2VuZF8yMDE4XzEyXzE3X3FuMkIxZjhnYW5pY0pOS25KTjBlLmNzdiIKCmBgYAoKCgojIyBRdWVzdGlvbnMKClRoZSBmb2xsb3dpbmcgcXVlc3Rpb25zIHdpbGwgZm9jdXMgb24gYW5hbHl6aW5nIHRoZSBsYW5kc2NhcGUgdHlwZXMgaW4gdGhlIHJlZ2lvbiBvZiB0aGUgUmljZSBSaXZlcnMgQ2VudGVyLgoKMS4gTGFuZHNjYXBlIHN0cnVjdHVyZSBjYW4gYmUgZXhhbWluZWQgYnkgdHlwZSwgY29tcG9zaXRpb24sIGFuZCBjb25maWd1cmF0aW9uLiAgTG9hZCBpbiB0aGUgYWJvdmUgdGhyZWUgdGltZSBwZXJpb2RzIGZvciB0aGUgc2FtZSBsb2NhdGlvbiBhbmQgY29tcGFyZSB0aGVtIGluIHRlcm1zIG9mIFR5cGUsIENvbXBvc2l0aW9uLCBhbmQgQ29uZmlndXJhdGlvbiAod2hlcmUgY29uZmlndXJhdGlvbiBpcyBtZWFzdXJlZCBieSBhdmVyYWdlIHBhdGNoIGFyZWEgZm9yIGZvcmVzdCB0eXBlcyAoYFZhbHVlICVpbiUgYyg0MSwgNDIsIDQzKSApYCkuCgoKMi4gSW4gMjAxMSwgdGhlIGJpZ2dlc3QgZGlmZmVyZW5jZSBpbiBoYWJpdGF0IGFyZWFzIHdhcyBhY2NvdW50ZWQgZm9yIGJ5IEhlcmJhY2VvdXMgZ3JvdW5kIGNvdmVyLiAgV2hhdCBoYXBwZW5lZCB0byB0aGF0IGxhbmQgdHlwZSBpbiAyMDEzIGFuZCAyMDE2Pwo=