
Overview
This activity will focus on working with simple networks. You will
need the following data sets.
library( gstudio )
library( popgraph )
data(arapat)
data(lopho)
data(baja)
Create a de novo network based upon a hypothesized
population model for your own organism and study site. Parameterize the
nodes with locations and names and visualize it both a-spatially and
spatially projected onto a map.
Estimate a population graph for the arapat data set and
visualize it in a leaflet()
map.
Estimate from the arapat population graph node-specific
parameters such as degree, centrality, and betweenness. Load in the
previous sex-baised dispersal data sets. Is the estimated habitat
suitability for each sampling locale correlated with any of these
graph-theoretic parameters?
Load in the lopho
and upiga
population
graphs and map out each of their individual popualtion graphs as well as
the congruence_topology
. What kind of inferences can you
gain by looking at these levels of spatial synchrony?
LS0tCnRpdGxlOiAiTmV0d29yayBNb2RlbHMiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KIVtdKGh0dHBzOi8vbGl2ZS5zdGF0aWNmbGlja3IuY29tLzY1NTM1LzUxMDIyOTkzODMyX2MwN2RkYjVlN2Ffb19kLmpwZykKCiMjIE92ZXJ2aWV3CgpUaGlzIGFjdGl2aXR5IHdpbGwgZm9jdXMgb24gd29ya2luZyB3aXRoIHNpbXBsZSBuZXR3b3Jrcy4gIFlvdSB3aWxsIG5lZWQgdGhlIGZvbGxvd2luZyBkYXRhIHNldHMuCgpgYGB7cn0KbGlicmFyeSggZ3N0dWRpbyApIApsaWJyYXJ5KCBwb3BncmFwaCApCmRhdGEoYXJhcGF0KQpkYXRhKGxvcGhvKQpkYXRhKGJhamEpCmBgYAoKCgoxLiBDcmVhdGUgYSAqZGUgbm92byogbmV0d29yayBiYXNlZCB1cG9uIGEgaHlwb3RoZXNpemVkIHBvcHVsYXRpb24gbW9kZWwgZm9yIHlvdXIgb3duIG9yZ2FuaXNtIGFuZCBzdHVkeSBzaXRlLiAgUGFyYW1ldGVyaXplIHRoZSBub2RlcyB3aXRoIGxvY2F0aW9ucyBhbmQgbmFtZXMgYW5kIHZpc3VhbGl6ZSBpdCBib3RoIGEtc3BhdGlhbGx5IGFuZCBzcGF0aWFsbHkgcHJvamVjdGVkIG9udG8gYSBtYXAuCgoyLiBFc3RpbWF0ZSBhIHBvcHVsYXRpb24gZ3JhcGggZm9yIHRoZSAqYXJhcGF0KiBkYXRhIHNldCBhbmQgdmlzdWFsaXplIGl0IGluIGEgYGxlYWZsZXQoKWAgbWFwLiAKCjMuIEVzdGltYXRlIGZyb20gdGhlICphcmFwYXQqIHBvcHVsYXRpb24gZ3JhcGggbm9kZS1zcGVjaWZpYyBwYXJhbWV0ZXJzIHN1Y2ggYXMgZGVncmVlLCBjZW50cmFsaXR5LCBhbmQgYmV0d2Vlbm5lc3MuICBMb2FkIGluIHRoZSBwcmV2aW91cyBzZXgtYmFpc2VkIGRpc3BlcnNhbCBkYXRhIHNldHMuICBJcyB0aGUgZXN0aW1hdGVkIGhhYml0YXQgc3VpdGFiaWxpdHkgZm9yIGVhY2ggc2FtcGxpbmcgbG9jYWxlIGNvcnJlbGF0ZWQgd2l0aCBhbnkgb2YgdGhlc2UgZ3JhcGgtdGhlb3JldGljIHBhcmFtZXRlcnM/Cgo0LiBMb2FkIGluIHRoZSBgbG9waG9gIGFuZCBgdXBpZ2FgIHBvcHVsYXRpb24gZ3JhcGhzIGFuZCBtYXAgb3V0IGVhY2ggb2YgdGhlaXIgaW5kaXZpZHVhbCBwb3B1YWx0aW9uIGdyYXBocyBhcyB3ZWxsIGFzIHRoZSBgY29uZ3J1ZW5jZV90b3BvbG9neWAuICBXaGF0IGtpbmQgb2YgaW5mZXJlbmNlcyBjYW4geW91IGdhaW4gYnkgbG9va2luZyBhdCB0aGVzZSBsZXZlbHMgb2Ygc3BhdGlhbCBzeW5jaHJvbnk/Cgo=