The Catfish Data
p <- 37/50
q <- 1-p
Coin Flipping & Sample Sizes
coin <- c("Heads","Tails")
Take a random sample (e.g., flip it!)
sample( coin, size=10, replace=TRUE )
[1] "Heads" "Heads" "Tails" "Tails" "Tails" "Tails" "Tails" "Tails" "Heads"
[10] "Tails"
Heads
Heads
Tails
Tails
Tails
Tails
Tails
Tails
Heads
Tails
Sample Sizes
N <- c( 10, 20, 50, 100, 250, 500 )
df <- data.frame( N = rep(N, each=20),
Catfish = NA )
flip_coins <- function( n ) {
outcome <- sample(coin,size=n,replace=TRUE)
return( sum( outcome == "Heads" ) )
}
df$Catfish = sapply( df$N,
flip_coins,
simplify=TRUE )
head( df )
library( ggplot2 )
df$N <- as.factor( df$N )
ggplot( df, aes(N, Catfish, fill=N)) +
geom_violin() +
theme_minimal( base_size = 16 ) +
theme( legend.position = "none")

LS0tCnRpdGxlOiAiU3RhdGlzdGljYWwgSW5mZXJlbmNlIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgoKIyMgVGhlIENhdGZpc2ggRGF0YQoKYGBge3J9CnAgPC0gMzcvNTAKcSA8LSAxLXAKYGBgCgoKCgoKIyMgQ29pbiBGbGlwcGluZyAmIFNhbXBsZSBTaXplcwoKCmBgYHtyfQpjb2luIDwtIGMoIkhlYWRzIiwiVGFpbHMiKQpgYGAKCgpUYWtlIGEgcmFuZG9tIHNhbXBsZSAoZS5nLiwgZmxpcCBpdCEpCgpgYGB7cn0Kc2FtcGxlKCBjb2luLCBzaXplPTEwLCByZXBsYWNlPVRSVUUgKQpgYGAKCgpTYW1wbGUgU2l6ZXMKCmBgYHtyfQpOIDwtIGMoIDEwLCAyMCwgNTAsIDEwMCwgMjUwLCA1MDAgKQpgYGAKCgoKYGBge3J9CmRmIDwtIGRhdGEuZnJhbWUoIE4gPSByZXAoTiwgZWFjaD0yMCksCiAgICAgICAgICAgICAgICAgIENhdGZpc2ggPSBOQSApCgpmbGlwX2NvaW5zIDwtIGZ1bmN0aW9uKCBuICkgewogIG91dGNvbWUgPC0gc2FtcGxlKGNvaW4sc2l6ZT1uLHJlcGxhY2U9VFJVRSkKICByZXR1cm4oIHN1bSggb3V0Y29tZSA9PSAiSGVhZHMiICkgKQp9CgpkZiRDYXRmaXNoID0gc2FwcGx5KCBkZiROLCAgCiAgICAgICAgICAgICAgICAgICAgIGZsaXBfY29pbnMsIAogICAgICAgICAgICAgICAgICAgICBzaW1wbGlmeT1UUlVFICkKCmhlYWQoIGRmICkKYGBgCgpgYGB7cn0KbGlicmFyeSggZ2dwbG90MiApCmRmJE4gPC0gYXMuZmFjdG9yKCBkZiROICkgCmdncGxvdCggZGYsIGFlcyhOLCBDYXRmaXNoLCBmaWxsPU4pKSArIAogIGdlb21fdmlvbGluKCkgKwogIHRoZW1lX21pbmltYWwoIGJhc2Vfc2l6ZSA9IDE2ICkgKyAKICB0aGVtZSggbGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiKQpgYGAKCg==