We can group our data into nominal (e.g., simply different) and
ordinal (e.g., different with a greater-than or less-than relationship)
types. This is often useful as we start doing quantitative analysis and
we collect data from different locations, at different times, in
different treatments, etc.
The Homework
What I want you do to for this homework is to create an in-text table
(in markdown using the knitr
and perhaps the
kableExtras
packages) with the mean values for all water
temperature, salinity, and pH measurements in the data set partitioned
by sampling month. For this, you will have to load in the data, convert
the dates into an object that you can pull out month as factor variables
(see the function lubridate::month
and use the longer month
names). Then estimate the average values for each month for the
variables. Your table should must have a caption and look
professional enough to be inserted into a actual thesis manuscript.
LS0tCnRpdGxlOiAiRmFjdG9yIERhdGEgS2V5IgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgohWypEaWZmZXJlbnQgY2F0ZWdvcmllcyBvZiBsZWd1bWVzIGF0IGEgbWFya2V0LipdKGh0dHBzOi8vbGl2ZS5zdGF0aWNmbGlja3IuY29tLzY1NTM1LzUxNDg0MDMyNDYwXzJmOTE3ZTFlNTZfel9kLmpwZykKCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCmxpYnJhcnkoIHRpZHl2ZXJzZSApCnVybCA8LSAiaHR0cHM6Ly9kb2NzLmdvb2dsZS5jb20vc3ByZWFkc2hlZXRzL2QvMU1rMVlHSDlMcWpGN2RySkUtdGQxR19Ka2RBRE9VMGVNbHJQMDFXRkJUOHMvcHViP2dpZD0wJnNpbmdsZT10cnVlJm91dHB1dD1jc3YiCnJpY2UgPC0gcmVhZF9jc3YoIHVybCApCmBgYAoKV2UgY2FuIGdyb3VwIG91ciBkYXRhIGludG8gbm9taW5hbCAoZS5nLiwgc2ltcGx5IGRpZmZlcmVudCkgYW5kIG9yZGluYWwgKGUuZy4sIGRpZmZlcmVudCB3aXRoIGEgZ3JlYXRlci10aGFuIG9yIGxlc3MtdGhhbiByZWxhdGlvbnNoaXApIHR5cGVzLiAgVGhpcyBpcyBvZnRlbiB1c2VmdWwgYXMgd2Ugc3RhcnQgZG9pbmcgcXVhbnRpdGF0aXZlIGFuYWx5c2lzIGFuZCB3ZSBjb2xsZWN0IGRhdGEgZnJvbSBkaWZmZXJlbnQgbG9jYXRpb25zLCBhdCBkaWZmZXJlbnQgdGltZXMsIGluIGRpZmZlcmVudCB0cmVhdG1lbnRzLCBldGMuCgoKIyMgVGhlIEhvbWV3b3JrCgpXaGF0IEkgd2FudCB5b3UgZG8gdG8gZm9yIHRoaXMgaG9tZXdvcmsgaXMgdG8gY3JlYXRlIGFuIGluLXRleHQgdGFibGUgKGluIG1hcmtkb3duIHVzaW5nIHRoZSBga25pdHJgIGFuZCBwZXJoYXBzIHRoZSBga2FibGVFeHRyYXNgIHBhY2thZ2VzKSB3aXRoIHRoZSBtZWFuIHZhbHVlcyBmb3IgYWxsIHdhdGVyIHRlbXBlcmF0dXJlLCBzYWxpbml0eSwgYW5kIHBIIG1lYXN1cmVtZW50cyBpbiB0aGUgZGF0YSBzZXQgcGFydGl0aW9uZWQgYnkgc2FtcGxpbmcgbW9udGguIEZvciB0aGlzLCB5b3Ugd2lsbCBoYXZlIHRvIGxvYWQgaW4gdGhlIGRhdGEsIGNvbnZlcnQgdGhlIGRhdGVzIGludG8gYW4gb2JqZWN0IHRoYXQgeW91IGNhbiBwdWxsIG91dCBtb250aCBhcyBmYWN0b3IgdmFyaWFibGVzIChzZWUgdGhlIGZ1bmN0aW9uIGBsdWJyaWRhdGU6Om1vbnRoYCBhbmQgdXNlIHRoZSBsb25nZXIgbW9udGggbmFtZXMpLiAgVGhlbiBlc3RpbWF0ZSB0aGUgYXZlcmFnZSB2YWx1ZXMgZm9yIGVhY2ggbW9udGggZm9yIHRoZSB2YXJpYWJsZXMuICBZb3VyIHRhYmxlIHNob3VsZCAqbXVzdCogaGF2ZSBhIGNhcHRpb24gYW5kIGxvb2sgcHJvZmVzc2lvbmFsIGVub3VnaCB0byBiZSBpbnNlcnRlZCBpbnRvIGEgYWN0dWFsIHRoZXNpcyBtYW51c2NyaXB0LiAK